If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+9x-19=0
a = 5; b = 9; c = -19;
Δ = b2-4ac
Δ = 92-4·5·(-19)
Δ = 461
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{461}}{2*5}=\frac{-9-\sqrt{461}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{461}}{2*5}=\frac{-9+\sqrt{461}}{10} $
| 3|4w-1|-5=10 | | 2x/3+7=11 | | (2x+9-(4x+7)-6x=74 | | 3m-4=5m=10 | | k=1∑550(2k+50) | | x2+6=30 | | y=1/5/4 | | 140+40x=1090 | | h/4+9=11 | | 3b+9=2b+12 | | 2w+5-8w=-4(w+2) | | 2x+3=-1/3 | | x/9+7=8 | | 9x^2+94x-55=0 | | 16x–8x-12=24+20 | | f+12=3f-20 | | 3k=2k-1 | | 1/(s^2+5s+3)=0 | | 2/5-18/5-7a/5=a | | 9x(x-11)+5(x-11)=0 | | 0.5(5-7x)=8- | | 8^x=0.25 | | 3=1/2*3,35t2 | | 3r/2-5/2=r/8+2/8 | | X(x-7)+12=6 | | 6x-(7+3x)=-43 | | 2x+5-7x-11=6x-28 | | G(3/5)=5x-12 | | 9x-7x-2=3x+2-x | | .5x+-3x+5=0 | | 7x-3x+4=3x+8 | | 2(4w-7)=3(w+2) |